Voronoi diagrams and arrangements

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing Levels in Arrangements and Higher Order Voronoi Diagrams 1 Constructing Levels in Arrangements and Higher Order Voronoi Diagrams

We give simple randomized incremental algorithms for computing the k-level in an arrangement of n hyperplanes in two-and three-dimensional space. The expected running time of our algorithms is O(nk + nn(n) log n) for the planar case, and O(nk 2 + n log 3 n) for the three-dimensional case. Both bounds are optimal unless k is very small. The algorithm generalizes to computing the k-level in an ar...

متن کامل

Arrangements in Higher Dimensions: Voronoi Diagrams, Motion Planning, and Other Applications

We review recent progress in the study of arrangements of surfaces in higher dimensions. This progress involves new and nearly tight bounds on the complexity of lower envelopes, single cells, zones, and other substructures in such arrangements, and the design of eecient algorithms (near optimal in the worst case) for constructing and manipulating these structures. We then present applications o...

متن کامل

Limits of Voronoi Diagrams

Dit proefschrift werd mede mogelijk gemaakt met financiële steun van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

متن کامل

Farthest-Polygon Voronoi Diagrams

Given a family of k disjoint connected polygonal sites in general position and of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log n) time algorithm to compute it. We also prove a number of structural properties of this ...

متن کامل

Voronoi Diagrams and Delaunay Triangulations

The Voronoi diagram of a set of sites partitions space into regions one per site the region for a site s consists of all points closer to s than to any other site The dual of the Voronoi diagram the Delaunay triangulation is the unique triangulation so that the circumsphere of every triangle contains no sites in its interior Voronoi diagrams and Delaunay triangulations have been rediscovered or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 1986

ISSN: 0179-5376,1432-0444

DOI: 10.1007/bf02187681